3.30.4 \(\int \frac {(3+5 x)^{3/2}}{(1-2 x)^{3/2} (2+3 x)^{3/2}} \, dx\) [2904]

3.30.4.1 Optimal result
3.30.4.2 Mathematica [C] (verified)
3.30.4.3 Rubi [A] (verified)
3.30.4.4 Maple [A] (verified)
3.30.4.5 Fricas [C] (verification not implemented)
3.30.4.6 Sympy [F]
3.30.4.7 Maxima [F]
3.30.4.8 Giac [F]
3.30.4.9 Mupad [F(-1)]

3.30.4.1 Optimal result

Integrand size = 28, antiderivative size = 129 \[ \int \frac {(3+5 x)^{3/2}}{(1-2 x)^{3/2} (2+3 x)^{3/2}} \, dx=\frac {11 \sqrt {3+5 x}}{7 \sqrt {1-2 x} \sqrt {2+3 x}}-\frac {31 \sqrt {1-2 x} \sqrt {3+5 x}}{49 \sqrt {2+3 x}}+\frac {31}{49} \sqrt {\frac {11}{3}} E\left (\arcsin \left (\sqrt {\frac {3}{7}} \sqrt {1-2 x}\right )|\frac {35}{33}\right )+\frac {4}{49} \sqrt {\frac {11}{3}} \operatorname {EllipticF}\left (\arcsin \left (\sqrt {\frac {3}{7}} \sqrt {1-2 x}\right ),\frac {35}{33}\right ) \]

output
31/147*EllipticE(1/7*21^(1/2)*(1-2*x)^(1/2),1/33*1155^(1/2))*33^(1/2)+4/14 
7*EllipticF(1/7*21^(1/2)*(1-2*x)^(1/2),1/33*1155^(1/2))*33^(1/2)+11/7*(3+5 
*x)^(1/2)/(1-2*x)^(1/2)/(2+3*x)^(1/2)-31/49*(1-2*x)^(1/2)*(3+5*x)^(1/2)/(2 
+3*x)^(1/2)
 
3.30.4.2 Mathematica [C] (verified)

Result contains complex when optimal does not.

Time = 6.26 (sec) , antiderivative size = 118, normalized size of antiderivative = 0.91 \[ \int \frac {(3+5 x)^{3/2}}{(1-2 x)^{3/2} (2+3 x)^{3/2}} \, dx=\frac {6 \sqrt {2+3 x} \sqrt {3+5 x} (23+31 x)-31 i \sqrt {33-66 x} (2+3 x) E\left (i \text {arcsinh}\left (\sqrt {9+15 x}\right )|-\frac {2}{33}\right )+35 i \sqrt {33-66 x} (2+3 x) \operatorname {EllipticF}\left (i \text {arcsinh}\left (\sqrt {9+15 x}\right ),-\frac {2}{33}\right )}{147 \sqrt {1-2 x} (2+3 x)} \]

input
Integrate[(3 + 5*x)^(3/2)/((1 - 2*x)^(3/2)*(2 + 3*x)^(3/2)),x]
 
output
(6*Sqrt[2 + 3*x]*Sqrt[3 + 5*x]*(23 + 31*x) - (31*I)*Sqrt[33 - 66*x]*(2 + 3 
*x)*EllipticE[I*ArcSinh[Sqrt[9 + 15*x]], -2/33] + (35*I)*Sqrt[33 - 66*x]*( 
2 + 3*x)*EllipticF[I*ArcSinh[Sqrt[9 + 15*x]], -2/33])/(147*Sqrt[1 - 2*x]*( 
2 + 3*x))
 
3.30.4.3 Rubi [A] (verified)

Time = 0.22 (sec) , antiderivative size = 139, normalized size of antiderivative = 1.08, number of steps used = 7, number of rules used = 7, \(\frac {\text {number of rules}}{\text {integrand size}}\) = 0.250, Rules used = {109, 27, 169, 27, 176, 123, 129}

Below are the steps used by Rubi to obtain the solution. The rule number used for the transformation is given above next to the arrow. The rules definitions used are listed below.

\(\displaystyle \int \frac {(5 x+3)^{3/2}}{(1-2 x)^{3/2} (3 x+2)^{3/2}} \, dx\)

\(\Big \downarrow \) 109

\(\displaystyle \frac {11 \sqrt {5 x+3}}{7 \sqrt {1-2 x} \sqrt {3 x+2}}-\frac {1}{7} \int \frac {10 x+17}{2 \sqrt {1-2 x} (3 x+2)^{3/2} \sqrt {5 x+3}}dx\)

\(\Big \downarrow \) 27

\(\displaystyle \frac {11 \sqrt {5 x+3}}{7 \sqrt {1-2 x} \sqrt {3 x+2}}-\frac {1}{14} \int \frac {10 x+17}{\sqrt {1-2 x} (3 x+2)^{3/2} \sqrt {5 x+3}}dx\)

\(\Big \downarrow \) 169

\(\displaystyle \frac {1}{14} \left (-\frac {2}{7} \int \frac {5 (31 x+23)}{\sqrt {1-2 x} \sqrt {3 x+2} \sqrt {5 x+3}}dx-\frac {62 \sqrt {1-2 x} \sqrt {5 x+3}}{7 \sqrt {3 x+2}}\right )+\frac {11 \sqrt {5 x+3}}{7 \sqrt {1-2 x} \sqrt {3 x+2}}\)

\(\Big \downarrow \) 27

\(\displaystyle \frac {1}{14} \left (-\frac {10}{7} \int \frac {31 x+23}{\sqrt {1-2 x} \sqrt {3 x+2} \sqrt {5 x+3}}dx-\frac {62 \sqrt {1-2 x} \sqrt {5 x+3}}{7 \sqrt {3 x+2}}\right )+\frac {11 \sqrt {5 x+3}}{7 \sqrt {1-2 x} \sqrt {3 x+2}}\)

\(\Big \downarrow \) 176

\(\displaystyle \frac {1}{14} \left (-\frac {10}{7} \left (\frac {22}{5} \int \frac {1}{\sqrt {1-2 x} \sqrt {3 x+2} \sqrt {5 x+3}}dx+\frac {31}{5} \int \frac {\sqrt {5 x+3}}{\sqrt {1-2 x} \sqrt {3 x+2}}dx\right )-\frac {62 \sqrt {1-2 x} \sqrt {5 x+3}}{7 \sqrt {3 x+2}}\right )+\frac {11 \sqrt {5 x+3}}{7 \sqrt {1-2 x} \sqrt {3 x+2}}\)

\(\Big \downarrow \) 123

\(\displaystyle \frac {1}{14} \left (-\frac {10}{7} \left (\frac {22}{5} \int \frac {1}{\sqrt {1-2 x} \sqrt {3 x+2} \sqrt {5 x+3}}dx-\frac {31}{5} \sqrt {\frac {11}{3}} E\left (\arcsin \left (\sqrt {\frac {3}{7}} \sqrt {1-2 x}\right )|\frac {35}{33}\right )\right )-\frac {62 \sqrt {1-2 x} \sqrt {5 x+3}}{7 \sqrt {3 x+2}}\right )+\frac {11 \sqrt {5 x+3}}{7 \sqrt {1-2 x} \sqrt {3 x+2}}\)

\(\Big \downarrow \) 129

\(\displaystyle \frac {1}{14} \left (-\frac {10}{7} \left (-\frac {4}{5} \sqrt {\frac {11}{3}} \operatorname {EllipticF}\left (\arcsin \left (\sqrt {\frac {3}{7}} \sqrt {1-2 x}\right ),\frac {35}{33}\right )-\frac {31}{5} \sqrt {\frac {11}{3}} E\left (\arcsin \left (\sqrt {\frac {3}{7}} \sqrt {1-2 x}\right )|\frac {35}{33}\right )\right )-\frac {62 \sqrt {1-2 x} \sqrt {5 x+3}}{7 \sqrt {3 x+2}}\right )+\frac {11 \sqrt {5 x+3}}{7 \sqrt {1-2 x} \sqrt {3 x+2}}\)

input
Int[(3 + 5*x)^(3/2)/((1 - 2*x)^(3/2)*(2 + 3*x)^(3/2)),x]
 
output
(11*Sqrt[3 + 5*x])/(7*Sqrt[1 - 2*x]*Sqrt[2 + 3*x]) + ((-62*Sqrt[1 - 2*x]*S 
qrt[3 + 5*x])/(7*Sqrt[2 + 3*x]) - (10*((-31*Sqrt[11/3]*EllipticE[ArcSin[Sq 
rt[3/7]*Sqrt[1 - 2*x]], 35/33])/5 - (4*Sqrt[11/3]*EllipticF[ArcSin[Sqrt[3/ 
7]*Sqrt[1 - 2*x]], 35/33])/5))/7)/14
 

3.30.4.3.1 Defintions of rubi rules used

rule 27
Int[(a_)*(Fx_), x_Symbol] :> Simp[a   Int[Fx, x], x] /; FreeQ[a, x] &&  !Ma 
tchQ[Fx, (b_)*(Gx_) /; FreeQ[b, x]]
 

rule 109
Int[((a_.) + (b_.)*(x_))^(m_)*((c_.) + (d_.)*(x_))^(n_)*((e_.) + (f_.)*(x_) 
)^(p_), x_] :> Simp[(b*c - a*d)*(a + b*x)^(m + 1)*(c + d*x)^(n - 1)*((e + f 
*x)^(p + 1)/(b*(b*e - a*f)*(m + 1))), x] + Simp[1/(b*(b*e - a*f)*(m + 1)) 
 Int[(a + b*x)^(m + 1)*(c + d*x)^(n - 2)*(e + f*x)^p*Simp[a*d*(d*e*(n - 1) 
+ c*f*(p + 1)) + b*c*(d*e*(m - n + 2) - c*f*(m + p + 2)) + d*(a*d*f*(n + p) 
 + b*(d*e*(m + 1) - c*f*(m + n + p + 1)))*x, x], x], x] /; FreeQ[{a, b, c, 
d, e, f, p}, x] && LtQ[m, -1] && GtQ[n, 1] && (IntegersQ[2*m, 2*n, 2*p] || 
IntegersQ[m, n + p] || IntegersQ[p, m + n])
 

rule 123
Int[Sqrt[(e_.) + (f_.)*(x_)]/(Sqrt[(a_) + (b_.)*(x_)]*Sqrt[(c_) + (d_.)*(x_ 
)]), x_] :> Simp[(2/b)*Rt[-(b*e - a*f)/d, 2]*EllipticE[ArcSin[Sqrt[a + b*x] 
/Rt[-(b*c - a*d)/d, 2]], f*((b*c - a*d)/(d*(b*e - a*f)))], x] /; FreeQ[{a, 
b, c, d, e, f}, x] && GtQ[b/(b*c - a*d), 0] && GtQ[b/(b*e - a*f), 0] &&  !L 
tQ[-(b*c - a*d)/d, 0] &&  !(SimplerQ[c + d*x, a + b*x] && GtQ[-d/(b*c - a*d 
), 0] && GtQ[d/(d*e - c*f), 0] &&  !LtQ[(b*c - a*d)/b, 0])
 

rule 129
Int[1/(Sqrt[(a_) + (b_.)*(x_)]*Sqrt[(c_) + (d_.)*(x_)]*Sqrt[(e_) + (f_.)*(x 
_)]), x_] :> Simp[2*(Rt[-b/d, 2]/(b*Sqrt[(b*e - a*f)/b]))*EllipticF[ArcSin[ 
Sqrt[a + b*x]/(Rt[-b/d, 2]*Sqrt[(b*c - a*d)/b])], f*((b*c - a*d)/(d*(b*e - 
a*f)))], x] /; FreeQ[{a, b, c, d, e, f}, x] && GtQ[(b*c - a*d)/b, 0] && GtQ 
[(b*e - a*f)/b, 0] && PosQ[-b/d] &&  !(SimplerQ[c + d*x, a + b*x] && GtQ[(d 
*e - c*f)/d, 0] && GtQ[-d/b, 0]) &&  !(SimplerQ[c + d*x, a + b*x] && GtQ[(( 
-b)*e + a*f)/f, 0] && GtQ[-f/b, 0]) &&  !(SimplerQ[e + f*x, a + b*x] && GtQ 
[((-d)*e + c*f)/f, 0] && GtQ[((-b)*e + a*f)/f, 0] && (PosQ[-f/d] || PosQ[-f 
/b]))
 

rule 169
Int[((a_.) + (b_.)*(x_))^(m_)*((c_.) + (d_.)*(x_))^(n_)*((e_.) + (f_.)*(x_) 
)^(p_)*((g_.) + (h_.)*(x_)), x_] :> Simp[(b*g - a*h)*(a + b*x)^(m + 1)*(c + 
 d*x)^(n + 1)*((e + f*x)^(p + 1)/((m + 1)*(b*c - a*d)*(b*e - a*f))), x] + S 
imp[1/((m + 1)*(b*c - a*d)*(b*e - a*f))   Int[(a + b*x)^(m + 1)*(c + d*x)^n 
*(e + f*x)^p*Simp[(a*d*f*g - b*(d*e + c*f)*g + b*c*e*h)*(m + 1) - (b*g - a* 
h)*(d*e*(n + 1) + c*f*(p + 1)) - d*f*(b*g - a*h)*(m + n + p + 3)*x, x], x], 
 x] /; FreeQ[{a, b, c, d, e, f, g, h, n, p}, x] && LtQ[m, -1] && IntegersQ[ 
2*m, 2*n, 2*p]
 

rule 176
Int[((g_.) + (h_.)*(x_))/(Sqrt[(a_.) + (b_.)*(x_)]*Sqrt[(c_) + (d_.)*(x_)]* 
Sqrt[(e_) + (f_.)*(x_)]), x_] :> Simp[h/f   Int[Sqrt[e + f*x]/(Sqrt[a + b*x 
]*Sqrt[c + d*x]), x], x] + Simp[(f*g - e*h)/f   Int[1/(Sqrt[a + b*x]*Sqrt[c 
 + d*x]*Sqrt[e + f*x]), x], x] /; FreeQ[{a, b, c, d, e, f, g, h}, x] && Sim 
plerQ[a + b*x, e + f*x] && SimplerQ[c + d*x, e + f*x]
 
3.30.4.4 Maple [A] (verified)

Time = 1.35 (sec) , antiderivative size = 135, normalized size of antiderivative = 1.05

method result size
default \(\frac {\sqrt {3+5 x}\, \sqrt {1-2 x}\, \sqrt {2+3 x}\, \left (33 \sqrt {5}\, \sqrt {2+3 x}\, \sqrt {7}\, \sqrt {1-2 x}\, \sqrt {-3-5 x}\, F\left (\sqrt {10+15 x}, \frac {\sqrt {70}}{35}\right )-31 \sqrt {5}\, \sqrt {2+3 x}\, \sqrt {7}\, \sqrt {1-2 x}\, \sqrt {-3-5 x}\, E\left (\sqrt {10+15 x}, \frac {\sqrt {70}}{35}\right )-930 x^{2}-1248 x -414\right )}{4410 x^{3}+3381 x^{2}-1029 x -882}\) \(135\)
elliptic \(\frac {\sqrt {-\left (-1+2 x \right ) \left (3+5 x \right ) \left (2+3 x \right )}\, \left (-\frac {2 \left (-18-30 x \right ) \left (\frac {23}{294}+\frac {31 x}{294}\right )}{\sqrt {\left (x^{2}+\frac {1}{6} x -\frac {1}{3}\right ) \left (-18-30 x \right )}}-\frac {46 \sqrt {10+15 x}\, \sqrt {21-42 x}\, \sqrt {-15 x -9}\, F\left (\sqrt {10+15 x}, \frac {\sqrt {70}}{35}\right )}{1029 \sqrt {-30 x^{3}-23 x^{2}+7 x +6}}-\frac {62 \sqrt {10+15 x}\, \sqrt {21-42 x}\, \sqrt {-15 x -9}\, \left (-\frac {7 E\left (\sqrt {10+15 x}, \frac {\sqrt {70}}{35}\right )}{6}+\frac {F\left (\sqrt {10+15 x}, \frac {\sqrt {70}}{35}\right )}{2}\right )}{1029 \sqrt {-30 x^{3}-23 x^{2}+7 x +6}}\right )}{\sqrt {1-2 x}\, \sqrt {2+3 x}\, \sqrt {3+5 x}}\) \(195\)

input
int((3+5*x)^(3/2)/(1-2*x)^(3/2)/(2+3*x)^(3/2),x,method=_RETURNVERBOSE)
 
output
1/147*(3+5*x)^(1/2)*(1-2*x)^(1/2)*(2+3*x)^(1/2)*(33*5^(1/2)*(2+3*x)^(1/2)* 
7^(1/2)*(1-2*x)^(1/2)*(-3-5*x)^(1/2)*EllipticF((10+15*x)^(1/2),1/35*70^(1/ 
2))-31*5^(1/2)*(2+3*x)^(1/2)*7^(1/2)*(1-2*x)^(1/2)*(-3-5*x)^(1/2)*Elliptic 
E((10+15*x)^(1/2),1/35*70^(1/2))-930*x^2-1248*x-414)/(30*x^3+23*x^2-7*x-6)
 
3.30.4.5 Fricas [C] (verification not implemented)

Result contains higher order function than in optimal. Order 9 vs. order 4.

Time = 0.07 (sec) , antiderivative size = 82, normalized size of antiderivative = 0.64 \[ \int \frac {(3+5 x)^{3/2}}{(1-2 x)^{3/2} (2+3 x)^{3/2}} \, dx=-\frac {540 \, {\left (31 \, x + 23\right )} \sqrt {5 \, x + 3} \sqrt {3 \, x + 2} \sqrt {-2 \, x + 1} - 1357 \, \sqrt {-30} {\left (6 \, x^{2} + x - 2\right )} {\rm weierstrassPInverse}\left (\frac {1159}{675}, \frac {38998}{91125}, x + \frac {23}{90}\right ) + 2790 \, \sqrt {-30} {\left (6 \, x^{2} + x - 2\right )} {\rm weierstrassZeta}\left (\frac {1159}{675}, \frac {38998}{91125}, {\rm weierstrassPInverse}\left (\frac {1159}{675}, \frac {38998}{91125}, x + \frac {23}{90}\right )\right )}{13230 \, {\left (6 \, x^{2} + x - 2\right )}} \]

input
integrate((3+5*x)^(3/2)/(1-2*x)^(3/2)/(2+3*x)^(3/2),x, algorithm="fricas")
 
output
-1/13230*(540*(31*x + 23)*sqrt(5*x + 3)*sqrt(3*x + 2)*sqrt(-2*x + 1) - 135 
7*sqrt(-30)*(6*x^2 + x - 2)*weierstrassPInverse(1159/675, 38998/91125, x + 
 23/90) + 2790*sqrt(-30)*(6*x^2 + x - 2)*weierstrassZeta(1159/675, 38998/9 
1125, weierstrassPInverse(1159/675, 38998/91125, x + 23/90)))/(6*x^2 + x - 
 2)
 
3.30.4.6 Sympy [F]

\[ \int \frac {(3+5 x)^{3/2}}{(1-2 x)^{3/2} (2+3 x)^{3/2}} \, dx=\int \frac {\left (5 x + 3\right )^{\frac {3}{2}}}{\left (1 - 2 x\right )^{\frac {3}{2}} \left (3 x + 2\right )^{\frac {3}{2}}}\, dx \]

input
integrate((3+5*x)**(3/2)/(1-2*x)**(3/2)/(2+3*x)**(3/2),x)
 
output
Integral((5*x + 3)**(3/2)/((1 - 2*x)**(3/2)*(3*x + 2)**(3/2)), x)
 
3.30.4.7 Maxima [F]

\[ \int \frac {(3+5 x)^{3/2}}{(1-2 x)^{3/2} (2+3 x)^{3/2}} \, dx=\int { \frac {{\left (5 \, x + 3\right )}^{\frac {3}{2}}}{{\left (3 \, x + 2\right )}^{\frac {3}{2}} {\left (-2 \, x + 1\right )}^{\frac {3}{2}}} \,d x } \]

input
integrate((3+5*x)^(3/2)/(1-2*x)^(3/2)/(2+3*x)^(3/2),x, algorithm="maxima")
 
output
integrate((5*x + 3)^(3/2)/((3*x + 2)^(3/2)*(-2*x + 1)^(3/2)), x)
 
3.30.4.8 Giac [F]

\[ \int \frac {(3+5 x)^{3/2}}{(1-2 x)^{3/2} (2+3 x)^{3/2}} \, dx=\int { \frac {{\left (5 \, x + 3\right )}^{\frac {3}{2}}}{{\left (3 \, x + 2\right )}^{\frac {3}{2}} {\left (-2 \, x + 1\right )}^{\frac {3}{2}}} \,d x } \]

input
integrate((3+5*x)^(3/2)/(1-2*x)^(3/2)/(2+3*x)^(3/2),x, algorithm="giac")
 
output
integrate((5*x + 3)^(3/2)/((3*x + 2)^(3/2)*(-2*x + 1)^(3/2)), x)
 
3.30.4.9 Mupad [F(-1)]

Timed out. \[ \int \frac {(3+5 x)^{3/2}}{(1-2 x)^{3/2} (2+3 x)^{3/2}} \, dx=\int \frac {{\left (5\,x+3\right )}^{3/2}}{{\left (1-2\,x\right )}^{3/2}\,{\left (3\,x+2\right )}^{3/2}} \,d x \]

input
int((5*x + 3)^(3/2)/((1 - 2*x)^(3/2)*(3*x + 2)^(3/2)),x)
 
output
int((5*x + 3)^(3/2)/((1 - 2*x)^(3/2)*(3*x + 2)^(3/2)), x)